
JOURNAL OF COMPUTATIONAL PHYSICS 40, 517-526 (1981)

Note

A Very Fast Shift-Register Sequence
Random Number Generator

In the most widely used class of pseudo-random number generators [1,2], each
random integer, xi, is obtained from its predecessor, xi- 1, by

xi = caXj& 1 (mod m).

It is convenient to discuss the integer sequence (xi] 0 < xi < m}, although in practice
one would convert the xi into floating point numbers distributed over some fixed
finite interval, such as (0, 1). If m is prime and a is a positive primitive root of M, i.e.,
am = 1 (mod m) but V,,, an # 1 (mod m), then a single periodic sequence of integers
is generated by (1) with the maximum possible cycle length, m - 1. For ~~~~~~~~~
with 32 bit words, the Mersenne prime m = 231 - 1 is a convenient modulus. A
subroutine GGL [3], using (I) with a = 7’ = 16807, which is primitive with respect
to ZZ3’ - 1, has seen extensive use on IBM computers. It is found to have good
statistical properties [4], and is quite fast. On an IBM 3701168 it requires roug
2 ~see to generate each new ‘random number.

Its drawback is its cycle length, 23’ - 1 z 2 X IO’ steps, which can be exl~aust~~ in
about one hour on a modern high speed computer. It is no longer unusual for a single
simulation to consume more than lo8 random numbers. The customary procedure for
initializing a random number generator is to supply an arbitrary value for x1. IJnless
the user is careful to let xi be the last random number generated in the pr~v~o~~
simulation, there is a significant likelihood that overlapping portions of the basic
sequence will be generated in successive simulations. This may lead to redundant
results. By combining n distinct random number sequences of cycle tength (m - 1)
one can in principle [6] increase the effective cycle length to (m - I)“, but this costs
at least an n-fold increase in the time required to generate each random number.

Use of d successive pseudo-random numbers as sample coordinates in a
dimensional space introduces a second need for longer cycle length. A single-stew
recurrence like (1) produces only m - 1 distinct successor d-tuples. Since there are
(m - l)d possible positions in the d-dimensional space, the set of positions generated
is sparse. Worse, there are known to be unfortunate choices of a for which the &tuple
sample positions are very unevenly distributed for some d, even though the cycle
length is maximal [7]. In order to assure uniformly distributed sampling in ~-5~~~~~
therefore, a cycle length exceeding (m - l)d is desirable.

517
0021-9991/81:040511-i0s02.QQ~0

Copyrigbt 0 1981 by Academic Press, Inc.

581/40/2-11 All rights of reproduction in my form reserved.

518 KIRKPATRICK AND STOLL

An algorithm for producing pseudo-random bit sequences of effectively unlimited
period was introduced by Tausworthe [S, 91. Let the kth bit, ak, in the sequence be
given by

ak=clak-l + c2ak-2 + “- cp-lak-p+l + ak-p (mod 2). (2)

Then since each p-tuple of successive bits’ depends only upon the previous n-tuple, the
maximum possible cycle length is 2p - 1. This is achieved iff the polynomial
1 + c,x + c2x2 + .+. + c~-~x~-’ + xp is primitive over GF(2) [2]. A sequence of m-
bit random integers {xi} can be thought of as m columns of random bits, and bitwise
addition without carry is simply- the “exclusive or” operation, denoted 0, commonly
available as a primitive machine instruction. Thus the algorithm [lo]

Xk=C,Xk-IOC2Xk-2O.“OCp-1Xk--p+,OXk-p, (3)

may generate very long pseudo-random sequences. Primitive trinomials, 1 + xq + xp,
p > q, have been, identified up to quite large order [Ill. Using a primitive trinomial
reduces (3) to ,

Xk =xk-q @ xk-Py

which requires only one exclusive or and some address calculations for each new
integer generated. A random number generator based on (4) may therefore be as fast
as or faster than a multiplicative congruential generator of the type (I), while
providing a period 2p - 1 and requiring only the extra space to store the previous p
iterates.

The chief weakness of (4) is that it requires careful initialization. If the ith and jth
bits are identical in each of the first p integers of the sequence they will remain iden-
tical throughout. If the first p entries in the ith and jth bit positions are nearly iden-
tical it may take many iterations before they become independent. Lewis and
Payne [IO] propose initializing {xi .a. x,} such that each column of bits contains a
delayed replica of the same basic bit sequence, using a delay of order 100~ steps
between columns. Initialization to generate n-bit random numbers can be done with
1OOpn calls to the basic subroutine, and thus is moderately time-consuming.
Extensive statistical tests [I 1, 121 have confirmed the safety of this initialization
procedure.

We propose a quicker and less cumbersome initialization procedure. Simply use a
good random number generator of type (1) to produce the first p integers, then
continue with algorithm (4). The risk in doing this is that the columns of bits one
starts with may not be linearly independent. If that occurs, the sequence will not
generate all possible floating point numbers, and thus will not have the maximum
period [9, 121. For p > 50 this is extremely unlikely, but a simple construction can be
incorporated into the initialization to guarantee linear independence of the columns if
desired. (For this suggestion we are indebted to J. Arthur Greenwood.) Let s be the

VERY FAST RANDOMNUMBERGENERATOR 519

number of bits in each mantissa. Choose s distinct numbers from among the 4 initial
random numbers and think of the bits in their mantissas as forming an s by s element
square array. Replace the diagonal elements of this array by ‘l’s, and the lower
triangle of the array by ‘O’s, and restore the modified numbers to their ~~igi~aI
positions. Finally, initialization by giving a single seed to the first random number
generator makes it simple to reproduce a simulation while the extreme cycle length of
(4) minimizes the danger that two different seeds will create overlapping sequences,

We have used GGL [3] to initialize a shift-register sequence based on the ~rirn~t~ve
trinomial with 4 = 103, p = 250. Comparisons of the resulting generator, denoted
R.250, with GGL are presented in the next section. The s~~~o~ti~e used is exhibited
(in IBM 370 assembly language) in the Appendix. If a smaller storage r~quir~rn~~t,
or a still longer cycle is desired, other values of p and 4 may be substituted in the
program. The sets (p, 4) = (98,27) and (521, 32) both give primitive trinomials
012, I?].

COMPARISONS

Figures la-c each display 10,000 random numbers, grouped in pairs and pl
the unit square. The numbers in Fig. la were created with GGL, those in Figs.
c with P.250. The quicker initialization procedure was followed in const
Fig. lb, while the full delayed replica process was employed in Fig. Ic. To cursory
inspection, all three distributions look uniform and correlation-free. There is no
evidence of the striated density variations identified by Marsaglia [S]. However, on
closer inspection, one’s eyes invariably detect local patterns, whether they h
statistical validity or not. A more quantitative statistical analysis is ne
determine whether any given process generates numbers which are neither to
distributed or too clumped to be independent.

Triples of random numbers are often used in simulations. To test the uniformity of
successive triples of random numbers generated by the two algorithms~ 106 such
triples were constructed for each and assigned to cells in the unit cube, with a
resolution of 32 x 32 X 32 ceils. This tests properties of the leading five
random rmmber in the sequence. Since all columns of bits generated by
the same statistical characteristics, results of this test apply to any subset of bits in
the sequence of numbers generated by R250. A useful measure of the cell-to-cell
variation is the X2-like quantity

where n(i, j, k) denotes the number of triples falling into cell (i, j, k) and n, is the
mean number of triples per cell. If the xi are independently distributed, cp N I. For
both R250 and GGL we obtained q = 1.00 * 0.005, taking several samples of 1
numbers each.

520 KIRKPATRICK AND STOLL

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. la. 10,000 random numbers uniformly distributed in the unit interval, generated by GGL and
plotted as 5000 sequential (x, y) pairs.

0.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. lb. 10,000 random numbers, plotted as in Fig. la, but generated by R250 with the simplified
initialization.

VERY FAST RANDOM NUMBER GENERATOR 521

FIG. lc. As in Figs. la and b, but using a sequence generated by R250 following the full deiayed
columns initialization procedure suggested in Ref. 191.

Autocorrelation statistics for both generators agree with the results expected for
uniformly and independently distributed random variables. The nth a~tocorr~la~io~
coefficient, g(n),

g(k) = (XiXi-k) - (xi)2> (6)

was obtained for sequences of 104 to 1Q6 random numbers and 0 < k < 20, using both
GGL and the simplified form of R25C9. In Table I we show averages of g(k) over 100
samples of IO4 random numbers each. The variance expected when g(k) is measured
for a sequence of N numbers is

Ibw) - (mw’2

= PP2{ (xf)’ + 2(x;)(xJ2 - 3(xi)4}1’2

zz 0.3K 1’2. m

The results in Table I are in good agreement with this, as were experiments with other
values if N. We also note that there is no obvious dependence of either (g(k)) or its
variance on the separation, k. Although the variability observed with GGL is slightly
greater than that of R250, the difference seems too small to have any observable
impact on a simulation.

Testing for the probability of runs of increasing or decreasing xi gives a measure of
any higher order correlations not detected in the two point correlation g(k), We

%l,l40/2 18

522 KIRKPATRICK AND STOLL

consider that a sequence suci that xW1 > x0 < x, < -em <x,-, <x, > x,+1 contains a
run of length s between x0 and x,. The expected number of such runs (of all lengths)
in a sequence of N independent random numbers is [4] -2N/3. The expected number

TABLE I

Autocorrelation Statistic9

AVERAGED AUTOCORRELATION COEFFICIENTS= 0.333374
0.249928 0.250060 0.249970 0.249855 0.249933
0.249965 0.250088 0.249890 0.250044 0.250154
0.250034 0.250073 0.250095 0.250110 0.249976
0.250092 0.249940 0.250081 0.249979 0.250107

"ARlANCE OF AUTOCORRELATION COEFFICIENTS= 0.003109
0.003138 0.003105 0.*03088 0.003071 0.003014
0.002923 0.003113 0.002913 0.003025 0.002994
cl.003081 0.002926 0.003011 0.003008 0.003017
0.003063 0.003160 0.002998 0.003025 0.002971

10000 RANDOM NO8 WITH GGL2 100 TIMES
AVERAGED A"TO"ORRELHT~ON COEFFICIENTS= 0.334018

0.250610 0.250521 0.250523 0.250467 0.250709
0.250513 0.250510 0.250666 0.25051Y 0.250600
0.250533 0.250520 0.250480 0.250565 0.250532
0.250675 0.250518 0.250539 0.250650 0.250638

VARIANCE OF RUTOCORRELATION COEFFICIENTS= 0.003215
0.003160 0.003127 0.002979 0.003164 0.003153
0.003133 0.003226 0.003245 0.0031il 0.003157
0.003108 0.003OY5 0.003311 0.003229 0.003108
0.003100 0.003283 0.003154 0.003278 0.003303

a Autocorrelation coefficient, g(k) (5), and its variance (6), for the multiplicative congruential random
number generator GGL (lower table) and the shift register sequence R250 (upper table). The results for
k = 0 are given in the title lines, followed by each quantity for k = 1 to 20.

TABLE II

Run Length Statistics’

NR"N8 CHISQ(6) N(1) N(2)
666666 6.00 416667 183333

666411 0.87 416315 183335
666631 5.77 416918 182958
666944 2.71'417009 183286
666632 13.88 416879 182632
667412 4.7,. 417762 183189
666354 6.69 416259 183409
666747 1.00 416804 183320
666906 6.13 417192 183023
667585 9.82 418125 183247

N(3) N(4) N(5) N(6) N(7) N(8) N(9)
52778 11508 2034 303 39 4 0

52839
52702
52883
53420
52696
52645
52706
52.948
52301
52887

2017 282
2029 306 45 4 1
2007 289 38 3 1
2114 278 52 0 0
2066 293 35 3 1
2103 282 47 8 2

44 8 0 11494
11503

2060 305
2087 274 666278 5.68 416195 183200

666881 2.34 416861 183461 52801 11374 2024 316
666256 2.52 415859 183682 52854 11486 2023 308
667423 10.52 417774 183306 52606 11280 2105 305
667477 9.54 417708 183584 52463 11294 2063 313
666225 6.51 416381 182885 52918 11552 2102 330
666549 2.18 416625 183223 52710 11572 2047 325

52301 11713 1990 302 667250 11.00 417599 183305
666245 12.82 416231 183124
667034 6.30 416891 183693

11521 2040 315
11634 2037 335
11425
11315
11426
11596
11518
11400

38 6 0
40 6 0
36 4 1

52727 11848 1985 287
52763 11394 1941 309

35 6 0
42 1 0
36 7 0
38 6 0
44 6 1
51 5 0
43 3 0
38 1 0
35 7 0
39 3 0
32 2 1 667147 3.74 417593 182924 52751 11470 2061 312

n Numbers of runs of either strictly increasing or strictly decreasing random numbers in 20 sequences
of lo6 numbers each, generated by the shift register algorithm using the simplified initiation procedure.
The top row gives the expected values for this sequence length.

VERY FAST RANDOM NUMBER GENERATOR 523

of runs of length s will be n(s) - 2N[(s + 1)’ + s]/(s c 3)! esults for 20 cases using
R250, each with N = 106, are compared in Table II with the expected values. The
observed run lengths agree with the expected values. To analyze the varieties
observed we use

Fluctuations in x2 are large. For 30 cases of N = IO6 using 250 we obtained
x2(6) = 6.2 5 3.5. Published data [4] on GGL shows even higher variability for this
test, with X’(k) > k.

As a final test, we have employed R250 and GGL in Monte Carlo calculations of
the energy and order parameter (magnetization) in the 2 Ising ferromagnet on a
square lattice, for which exact results are known. The exact magnetization is given by
I141

m(T) = [1 - csch”(2J/k,T)]“*. (9)

We considered a temperature just below the critical temperature, T, zz 2.2649/k,, For
the temperature chosen, (9) gives m(0.96Tc) = 0.8146 for an infinite system, while ehe
internal energy is U(0.96TC) = - 1.45473 per spin. A sample of 440 X 440 spins was
used, with all spins initially set = tl. The random numbers were used both to
determine which spin should attempt to flip and to compare with the
factor in determining whether the attempt was successful. Results for m(0
U(0.96TC) were averaged over periods for IO successive groups of 20
using both R250 and GGL. In each case, the answers are converging t
values. The congruential generator RANDIJ, known to have poor triplet
properties [7], fails this test. It leads to a magnetization roughly 10% too large

TABLE III

2D SQ Ising Monte Carlo Test”

R250:

m(T) 0.8759 0.8380 0.8297 0.8259 0.8245 0.8221 0.8256 0.8180 0.8193 0.8153 0.8146
- U(T) 1.5348 1.4708 1.4638 1.4606 1.4614 1.4588 1.4626 1.4554 1.4558 1.4556 1.4541

GCL:

m(T) 0.8754 0.8328 0.8253 0.8224 0.8197 0.8218 0.8200 0.8202 0.8177 0.8116 0.8146
--u(T) 1.5334 1.4640 1.4600 1~4566 1.4564 1.4604 1.4572 1.4590 1.4584 1.4504 I.4547

a Monte Carlo calculations of magnetization and internal energy for 440 x 440 spins ina 2D Esing
ferromagnet, each point averaged over 20 MC%

524 KIRKPATRICK AND STOLL

PROGRAMMING CONSIDERATIONS

Programming the algorithm (3) for a given p and 4 is straightforward. If the
random numbers are to be used in floating point arithmetic operations, on most
machines they need not be normalized, i.e., high order zeroes in the mantissa can be
tolerated. On the other hand, comparing two unnormalized floating point numbers
can give wrong results. For unnormalized random numbers the exclusive or
operations can be applied to the floating point numbers directly, followed by an
operation to reset the correct exponent. After calculating a vector of random
numbers, such a subroutine must copy the last p iterates into the first p locations to
be ready for subsequent calls.

If normalized random numbers are required, the subroutine must keep an array of
the 4 most recent unnormalized mantissas in addition to the normalized results, some
of which may have been left-shifted. The effort required is therefore two stores and
three address calculations per cycle instead of one store and two address calculations.
In the Appendix we give a example of algorithm (3) encoded to produce unnor-
malized numbers. Timing comparisons between normalized and unnormalized
variants of the algorithm, and a fast version of GGL [3, 51 are given in Table IV.
Because of the time required to shift the last 250 iterates, the full efficiency of the
unnormalized algorithm is not realized in calculating short sequences. Tests with an
unnormalized version of R250 which used an auxiliary rotating array suggested that
the breakeven point lies around 1000 iterates.

In conclusion, the Tausworthe-type shift register algorithm with only simple
precautions taken to insure a safe initialization provides statistical characteristics
which are indistinguishable in the short run from those of the best known
multiplicative congruential generators, and in the long run should be superior. There
is no performance penalty associated with the longer cycle length. In fact, if unnor-
malized random floating point numbers are acceptable (or if one uses a computer for
which the ratio of multiply to add time is greater than it is on the 370/168), the shift
register algorithm is the faster.

TABLE IV

Performance Comparison’

GGL2 (normalized)
GGL2 (unnormalized)
R250 (normalized)
R250 (unnormalized)

2.0 psec
1.5 ,usec
2.1 psec
l.Opsec

‘Time required to generate each random number,
using assembly coded implementations of algorithms
(1) and (4) on an IBM 370/168. IO’ numbers were
generated by each method to obtain timing.

VERYFAST RANDOMNUMBER

APPENDIX

GENERATOR 525

REFERENCES

1. D. H. LEHMER, 2nd Symposium on Large-Scale Digital Calculating Machinery,” Cambridge,
1951, p. 141.

2. D. KNUTH, “The Art of Computer Programming,” Vol. 2, Addison-Wesley, Reading, Mass., 1969.
3. IBM Subroutine Library-Mathematics, User’s Guide (197I), program number 5736.XM7.
4. P. A. W. LEWIS, A. S. GOODMAN, AND J. M. MILLER, IBM Systems J. 8 (1969), 136.
5. F. GUSTAVSON AND W. LINIGER, Computing 6 (1971), 221.
6. D. KNUTH, “The Art of Computer Programming,” Vol. 2, p. 30, Addison-Wesley, Reading, Mass.,

1969.

526 KIRKPATRICK AND STOLL

I. G. MARSAGLIA, Proc. Natl. Acad. Sci. 61 (1968), 25.
8. R. C. TAUSWORTHE, Math. Comput. 19 (1965), 201.
9. S. W. GOLOMB, “Shift Register Sequences,” Holden-Day, San Francisco, 1967,

10. T. G. LEWIS AND W. H. PAYNE, J. Assoc. Comput. Mach, 20 (1973), 456.
11. N. ZIERLER AND J. BRILLHART, Inform. Contr. 14 (1969), 566.
12. H. S. BRIGHT AND R. L. ENISON, Computing Surveys 11 (1979), 357.
13. T. G. LEWIS, “Distribution Sampling for Computer Simulation,” Heath, Lexington, Mass., 1975.
14. C. N. YANG, Phys. Rev. 85 (1952), 809.

RECEIVED: April 1, 1980
SCOTT KIRKPATRICK

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ERICH P. STOLL

IBM Research Laboratory
Siiumerstrasse 4

8803 Ruschlikon, Switzerland

